OpenDA Course 2023

Nils van Velzen, Martin Verlaan

July 18, 2023

Contents
1 Exercise: Getting Started 2
1.1 Imputfiles 3
1.2 Simulation and postprocessing with the double-pendulum model 3
1.3 An alternative simulation with the double-pendulum model . . . 4
1.4 An ensemble of model runs 4
2 Exercise: Some basic properties of the EnKF 6
3 Exercise: Localization 7
4 Exercise: A black-box model — Calibration 9
4.1 Wrapper configuration files 10
5 Exercise: A black-box model — Filtering 12
5.1 Sequential simulation L. 12
5.2 Sequential ensemble simulation 12
5.3 Parallel computing oL oo 12
5.4 Ensemble Kalman filter 13
6 Exercise: A black-box model — Steady-state filter 13

Installation of OpenDA

Before you can start with the exercises, you should first install OpenDA. For
the latest instructions, you are referred to
https://docs.openda.org/en/readthedocs/OpenDA_installation.html.

https://docs.openda.org/en/readthedocs/OpenDA_installation.html

1 Exercise: Getting Started

Directory: exercise_double_pendulum_partl

A pendulum is a rigid body that can swing under the influence of gravity. It
is attached at the top so it can rotate freely in a two-dimensional plane (z,y).
We will assume a thin rectangular shape with the mass equally distributed. A
double pendulum is a pendulum connected to the end of another pendulum.
Contrary to the regular movement of a pendulum, the motion of a double pen-
dulum is very irregular when sufficient energy is put into the system.

The dynamics of a double pendulum can be described with the following equa-
tions (https://en.wikipedia.org/wiki/Double_pendulum):

dgl _ i 2p91 - 3COS(91 - 92)]792

aby _ 1
dt mi?2 16 — 9cos?(0; — 63) M
@ _ i 8pg, — 3 cos(01 — 02)ps, (2)
dt mi2 16 — 9cos2(6; —)

dpe, _ 1 .o (d01d0> I

a ~ 2™ (dt a0 = 02) + 37 sin(0)), ®)

dp01 _ 1 2 d91 d92 . g .

a 2" (ar ar S0 —b2) & sin(@e)) @

where the x, y-position of the middle of the two segments can be computed as:

x = ésin(@l), (5)
y =5 cos(th) (©
22 = U(sin(61) + %sm(az)), (7)
ys = —l(cos(8y) + %cos(ﬁg)). (8)

This model, although simple, is very nonlinear and has a chaotic nature. Its
solution is very sensitive to the parameters and the initial conditions: a small
difference in those values can lead to a very different solution.

The purpose of this exercise is to get you started with OpenDA. You will learn
to run a model in OpenDA, make modifications to the input files, and plot the
results.

https://en.wikipedia.org/wiki/Double_pendulum

1.1 Input files

The input for this exercise is located in the directory exercise_pendulum_part1i.
For Linux and Mac OS X, go to this directory and start oda_run.sh, the main ap-
plication of OpenDA. For Windows, start the main application with oda_run_gui
.bat from the $0PENDA/bin directory. The main application allows you to view
and edit the OpenDA configuration files, run your simulations, and visualize
the results.

1.2 Simulation and postprocessing with the double-pen-
dulum model

Try to run a simulation with the double-pendulum model. You can use the
Conﬁguraﬁon,ﬁkasimulation_unperturbed.oda
For postprocessing in Python, the results are written to the file

simulation_unperturbed_results.py

These results can be loaded with:

1 import simulation_unperturbed_results as unperturbed
2 # import importlib; importlib.reload(unperturbed) if
unperturbed was loaded before

Listing 1: Python initialize

We have added a routine plot_movie to create an intuitive representation of the
data.

1 import pendulum as p #needed only once
2 p.plot_movie(unperturbed.model_time,unperturbed.x)

Listing 2: Python

To create a time-series plot in Python type:

1 plt.subplot(2,1,1)

2 plt.plot(unperturbed.model_time,unperturbed.x[:,0],"b")
3 # Python counts starting at O

4 plt.ylabel(r"θ_1") # use latex for label

5 plt.subplot(2,1,2)

6 plt.plot(unperturbed.model_time,unperturbed.x[:,1],"b")
7 plt.ylabel(r"θ_2")

8 plt.show()

9 # only needed if interactive plotting is off.

10 # Set with plt.ioff(), plt.ion()

Listing 3: Python

1.3 An alternative simulation with the double-pendulum
model

Then you can start an alternative simulation with the double-pendulum model
that starts with a slightly different initial condition using the configuration file
simulation_perturbed.oda. The different initial conditions can be found in

e modelDoublePendulumStochModel.xml, and
e modelDoublePendulumStochModel _perturbed.xml.

Visualize the unperturbed and perturbed results in a single plot. Make a movie
and a time-series plot of 6; and 65 variables. Do you see the solutions diverging
like the theory predicts?

To create a movie with both results in Python type:

1 import simulation_unperturbed_results as unperturbed

2 import simulation_perturbed_results as perturbed

3 p.plot_movie(unperturbed.model_time, unperturbed.x, perturbed
.X)

Listing 4: Python initialize

To create a time-series plot with both results in Python type:

plt.subplot(2,1,1)

plt.plot (unperturbed.model_time,unperturbed.x[:,0],"b")
Python counts starting at O
plt.plot(perturbed.model_time,perturbed.x[:,0],"g")
plt.ylabel(r"θ_1") # use LaTeX for label
plt.subplot(2,1,2)

plt.plot (unperturbed.model_time,unperturbed.x[:,1],"b")
plt.plot(perturbed.model_time,perturbed.x[:,1],"g")
plt.ylabel(r"θ_2")

plt.show()

© 00 N O O W N

[are
o

Listing 5: Python

1.4 An ensemble of model runs

Next, we want to create an ensemble of model runs all with slightly different
initial conditions. You can do this in several steps:
e First, create the input file simulation_ensemble.oda based on

simulation_unperturbed.oda. Change the algorithm and the configura-
tion of the algorithm. Hint: the algorithm is called

org.openda.algorithms.kalmanFilter.SequentialEnsembleSimulation.

e Create a configuration file for the ensemble algorithm (e.g. named

algorithm/SequentialEnsembleSimulation.xml). It should contain the
following content:

1 <?xml version="1.0" encoding="UTF-8"7>

2 <sequentialAlgorithm>

3 <analysisTimes type="fromObservationTimes"></
analysisTimes>

4 <ensembleSize>5</ensembleSize>

5 <ensembleModel stochParameter="false"

6 stochForcing="false"

7 stochInit="true" />

8 </sequentialAlgorithm>

Listing 6: XML input for sequentialAlgorithm

Hint: do not forget to refer to
algorithm/SequentialEnsembleSimulation.xml in
simulation_ensemble.oda and do not forget to give a different name to
the output files.

e Run the new configuration with OpenDA.

e Make a plot of the first and second variables of the five ensemble members
in a single time-series plot

import ensemble

import simulation_ensemble_results as res
(t,ens)=ensemble.reshape_ensemble(res)
ensl=ens[:,0,:] #note we start counting at 0
ens2=ens[:,1,:]

plt.subplot(2,1,1)
plt.plot(t[1:],ensl,"b")
plt.ylabel(r"θ_1")
plt.subplot(2,1,2)
plt.plot(t[1:],ens2,"d")
plt.ylabel(r"θ_2")

plt.show()

© 00 N O O W N

= e
N = O

Listing 7: Python

e Observations of 0, and 6, are available as well. Make a plot of the obser-
vations together with the simulation results.

1 import simulation_unperturbed_results as unperturbed

2 plt.subplot(2,1,1)

3 plt.plot (unperturbed.model_time,unperturbed.x[:,0],"b")

4 plt.plot (unperturbed.analysis_time,unperturbed.obs[:,0],
||k+||)

2

plt.ylabel(r"θ_1")

plt.subplot(2,1,2)

plt.plot(unperturbed.model_time,unperturbed.x[:,1],"d")

plt.plot(unperturbed.analysis_time,unperturbed.obs[:,1],
Hk+l|)

9 plt.ylabel(r"θ_2")

10 plt.show()

0w N o o,

Listing 8: Python

We can see that although our simulation starts on the right track, it
quickly diverges from the observations. The aim of the Ensemble Kalman
filter or data assimilation in general, is to keep the model on track.

Exercise: Some basic properties of the EnKF

Directory: exercise_double_pendulum part2
In this exercise, you will learn how to set up and run the EnKF method in
OpenDA.

e Prepare the input files for a run with the EnKF method. Use the input

files from exercise 1 as a template. Hint: the Ensemble Kalman filter is
called org.openda.algorithms.kalmanFilter.EnKF. The algorithm con-
figuration file has the following content

<?xml version="1.0" encoding="UTF-8"7>
<EnkfConfig>
<ensembleSize>10</ensembleSize>
<ensembleModel stochParameter="false"
stochForcing="false"
stochInit="true" />
</EnkfConfig>

0w N O 0w N

Listing 9: XML input for EnKF algorithm

Note: in this exercise, we are only considering the uncertainty in the initial
conditions. In general, also the uncertainty of the parameters or the model
forcing, such as boundary conditions can be considered.

Plot the ensemble mean of the first model variable and the observations.
With some luck, the solution should track the observations.

For comparison, we have also added the configurations for the 'truth’ and
an oda_run without data assimilation called ’initial’.

import simulation_truth_results as truth
import simulation_initial_results as initial
import simulation_enkf_results as enkf
plt.subplot(2,1,1)

plt.plot(initial.model_time,initial.x[:,0],"g")
plt.plot(truth.model_time,truth.x[:,0],"k")
plt.plot(enkf.analysis_time,enkf.x_f_centrall:,0],"b");
plt.legend(("initial","truth","EnKF"))
plt.ylabel(r"θ_1")

plt.subplot(2,1,2)
plt.plot(initial.model_time,initial.x[:,1],"g")
plt.plot(truth.model_time,truth.x[:,1],"k")
plt.plot(enkf.analysis_time,enkf.x_f_centrall[:,1],"b");
plt.ylabel(r"$\theta_2%")

plt.xlabel(r"t")

plt.show()

Listing 10: Python initialize

e The Ensemble Kalman filter uses a random number generator. In OpenDA
we can control the initial value of the generator by adding a line like:
<initialSeed type="specify" seedValue="21" /> near the end of the
main configuration file. Do you get the same results if you rerun with the
same value for the initial seed? And what if you use a different value?

e Look at the observation input file of the StochObserver. The StochOb-
server does not only describe the observations but the accuracy as well.
Can you make a new observation input file with similar observed values
but with a 10 times larger standard deviation for the observation error?
Tip: you can edit the file in OpenOffice or MS Excel or use the find-and-
replace function of an advanced text editor. Repeat the run with EnKF
but now for the new observations and plot the first variable of the ensem-
ble means and the observations. What do you see, and what is the reason
for this behavior of the algorithm?

e The number of ensemble members controls the accuracy of the ensemble
approximation. What happens if you decrease it to 10 or 67

3 Exercise: Localization

Directory: exercise_localization

In this exercise, you will learn about localization techniques and how to use them
in OpenDA. This exercise is inspired by the example model and experiments
from ”Impacts of localisation in the EnKF and EnOI: experiments with a small
model”, Peter R. Oke, Pavel Sakov and Stuart P. Corney, Ocean Dynamics
(2007) 57: 32-45.

The model we use is a simple circular advection model

da da

- —~ =90 9
ot * hrr ’)

where u = 1 is the speed of advection, a is a model variable, ¢ is time and x

is a space ranging from 1 to 1000 with grid spacings of 1. The computational
domain is periodic in .

In this model, there are two related variables a and b, where b is initialized with
a balance relationship:

da
b=0.5+10— 10
+10-- (10)
and propagated with an advection model similar to the one for a, i.e.:
ab ob
- — =0. 11
ot s Y (1)

Since a and b are propagated with the same flow, the balance relationship will
remain valid also for ¢ > 0. The relationship between a and b is motivated by
the geostrophic balance relationship between pressure (a) and velocity (b) in
oceanographic and atmospheric applications.

In this experiment, we will only observe and assimilate a and investigate how
both a and b are updated. The ensemble is carefully constructed in order to
have the correct statistics. The initial ensembles are generated offline and they
will be read when the model is initialized in OpenDA.

e Investigate the script generate_ensemble.py and figure out how the en-
sembles are generated.

e Run Python script generate_ensemble.py to generate ensembles, obser-
vations, and true state for a 25, 50, and 100 ensemble experiment.

e Run the experiment for 50 ensemble members (enkf_50.0da).

e The variables a and b can be compared to the true state using the Python
script plot_results.py.

e Run the experiment for 25 ensembles, copy the script plot_results.py to
e.g. plot_results_25.py and adjust it in order to read the results from
enkf25 results.py (change 2nd line of the plot_results.py script).
You will see that the 25 ensemble run is not able to improve the model.

e Create input to run a 100-ensemble experiment. Note: do not forget to
change the name of the output file (section resultWriter) to avoid your
previously-generated results being overwritten.

e Run an experiment with 25 ensembles with localization (see the script
enkf_25_loc.oda) and generate the plots.

e The results (for 25 ensembles) with localization should look better than
the experiment without localization.

e Investigate whether the relation between a and b is violated by the various
experiments. You can use the script check_balance.py.

e Try changing the localization radius (initial value is 50) and see how the
performance of the algorithms changes (both for results as balance be-
tween a and b). You can plot the localization weight functions for each
observation location (rho_0, rho_1, rho_2, and rho_3) as well.

4 Exercise: A black-box model — Calibration

A simple way to connect a model to OpenDA is by letting OpenDA access the
input and output files of the model. OpenDA cannot directly understand the
input and output files of an arbitrary model. Some code has to be written
such that the black-box model implementation of OpenDA can read and write
these files. In this exercise, you will learn how to connect an existing model to
OpenDA assuming that all the input and output files of the model can indeed be
accessed by OpenDA. The exercise focuses on the configuration of the black-box
wrapper in OpenDA.

The model describes the advection of two chemical substances. The first sub-
stance c¢; is emitted as a pollutant by a number of sources. However, in this case
this substance reacts with the oxygen in the air to form a more toxic substance
co. The model implements the following equations:

661 801

E U% = 71/T01, (12)
862 802 o

In the directory
exercise_black _box_calibration_polution/original model/
you will find:

1. the model executable: reactive_pollution model.py (Linux and Mac)
and reactive_pollution model.exe (Windows);

2. the model configuration file: config.yaml;
3. the forcings of the model (injection of pollutant): forcings;

4. the initial model state: input.

e Run the model, in the original model directory from the command line,
not using OpenDA.

The model generates the output files

cl lochA,cl locB, ¢l 1locC, cl locA, c2_1locB, and c2_1locC,

with time series of substance ¢; and cy at three predefined locations in the
model. The folder maps contains output files with the concentration of ¢; and
co on each grid point at specified times. The folder restart contains files that
allow the model to restart; continue the computations from the point where a
restart file has been written.

e Investigate the input and output files of the model.

e Generate a movie by running the script plot_movie_orig.py script from
the exercise_black box_calibration_polution (!) directory. This al-
lows you to study the behavior of the model.

4.1 Wrapper configuration files

The input and output files of this model are all easy-to-interpret ASCII files.
Therefore, we do not need model-specific routines to couple this model to
OpenDA.

When you couple an arbitrary model to OpenDA and you want to use the
black-box coupler, there are two approaches:

e write a pre- and post-processing script that translates the (relevant) model
files into a more generic format that is already supported (e.g. ASCII or
NetCDF).

e write your own adapter in Java (data object) to read and write the model
input and output files.

A black-box wrapper configuration usually consists of three XML files. For our
pollution model, these files are:

1. polluteWrapper.xml: This file specifies how OpenDA can run the model,
which input and output files are involved, and which data objects are used
to interpret the model files.

This file consists of the parts:

e aliasDefinitions: This is a list of strings that can be aliased in
the other XML files. This helps to make the wrapper XML file more
generic. E.g. the alias definition %outputFile, can be used to refer
to the output file of the model, without having to know the actual
name of that output file.

Note the special alias definition %instanceNumber?. This will be re-
placed internally at runtime with the member number of each created
model instance.

e run: the specification of what commands need to be executed when
the model is run.

e inputOutput: the list of ’input/output objects’, usually files, that
are used to access the model, i.e. to adjust the model’s input, and to
retrieve the model’s results. For each ’dataObject’, one must specify:

— the Java class that handles the reading from and/or writing to
the file

— the identifier of the dataObject, so that the model configuration
file can refer to it when specifying the model variables that can be
accessed by OpenDA, the so-called ’exchange items’ (see below)

— optionally, the arguments that are needed to initialize the data
object, i.e. to open the file.

2. polluteModel.xml: This is the main specification of the (deterministic)
model. It contains the following elements:

e wrapperConfig: A reference to the wrapper config file mentioned
above.

e aliasValues: The actual values to be used for the aliases defined in
the wrapper config file. For instance, the %configFile}, alias is set
to the value config.yaml.

10

e timeInfoExchangeItems: The name of the model variables (the ’ex-
change items’) that can be accessed to modify the start and end time
of the period that the model should compute to propagate itself to
the next analysis time.

e exchangeIltems: The model variables that are allowed to be ac-
cessed by OpenDA, for instance, parameters, boundary conditions,
and computed values at certain locations. Each variable exchange
item consists of its id, the dataObject that contains the item, and
the ’element name’, the name of the exchange item in the dataObject.

3. polluteStochModel.xml: the specification of the stochastic model. It
consists of two parts:

e modelConfig: A reference to the deterministic model configuration
file mentioned above polluteModel.xml.

e vectorSpecification: The specification of the vectors that will be
accessed by the OpenDA algorithm. These vectors are grouped into
two parts:

— The state that is manipulated by an OpenDA filtering algorithm,
i.e. the state of the model combined with the noise model(s).

— The so-called predictions, i.e. the values on observation locations
as computed by the model.

Start with a single OpenDA run to understand where the model results appear
for this configuration:

e Have a look at the files polluteWrapper.xml, polluteModel.xml and
polluteStochModel.xml, and recognize the various items mentioned a-
bove. Start the OpenDA GUI from the public/bin directory and run
the model using the Simulation.oda configuration. Note that the actual
model results are available in the directory where the black-box wrapper
has let the model perform its computation: work/workO.

Directory: exercise_black box_calibration_polution

In this exercise, we will calibrate the value of the reaction-rate constant. The
algorithm used in this example is the Dud (which stands for Doesn’t Use Deriva-
tive).

e Have a look at the Dud.oda and the configuration files it refers to. Run it
from the OpenDA GUI and have a look at the results. What could you
do to improve the results?

e Figure out where to change the control parameters for the calibration
procedure and play around with the settings to improve your results.

Calibration runs normally take longer than a few minutes. In that case, it
becomes convenient to be able to restart from a previous run.

e Adapt the configuration in such a way that you are able to restart the
Dud.oda from the result of a previous run.

11

5 Exercise: A black-box model — Filtering

5.1 Sequential simulation

We will first run our pollution model from OpenDA using the SequentialSim-
ulation algorithm. This run is exactly the same as running the model outside
OpenDA. However, the difference is that we provide a set of observations and
run the model and restart the model between the observation times. The out-
put will be available at the end in the generic OpenDA format that allows us
to compare the model results with the available observations of the system.

e Run the model within OpenDA by using the
SequentialSimulation.oda configuration. This will create the result file
sequentialSimulation_results.py. Use the script plot_movie_seq.py
to visualize the simulation results. The script plot_obs_seq.py shows the
difference in time between the model results (prediction) and observed
values of the system.

5.2 Sequential ensemble simulation

The next step is running an ensemble of simulations. In this case, we consider
the injection of pollutant cl in the model as our main source of uncertainty.
Similar to the sequential simulation we do not assimilate any data (yet).

e Run an ensemble forecast model by using the
SequentialEnsembleSimulation.oda configuration. Look at the con-
figuration file of the model (stochModelpolluteStochModel.xml). To
which variable does the algorithm impose stochastic forcing?

Have a look at the work directory, and note that the black-box wrapper
created the required ensemble members by repeatedly copying the tem-
plate directory stochModel/input to output/work<N>.

e Compare the result between the mean of the ensemble and the results
from SequentialSimulation.oda. Note the differences. You can use the
script plot_movie_enssim.py.

5.3 Parallel computing

Running the ensembles takes a lot of time, especially starting the model takes
quite some time compared to the actual computation time. Most computers
have multiple cores and the reactive pollution model only uses one core, so
we can use our cores to propagate multiple ensemble members forward in time
simultaneously.

e Compare the configurations SequentialEnsembleSimulation.oda and
enkf . oda which uses parallel propagation of ensemble members. Set the
number of simultaneous models equal to the number of cores on your
computer (maxThreads).

12

5.4 Ensemble Kalman filter

Now let us have a look at the configuration for performing OpenDA’s Ensem-
ble Kalman Filtering on our black-box model, using a twin experiment as an
example. The model has been run with the 'real’ (time-dependent) values for
the concentrations for substance 1 as disposed of by factory 1 and factory 2.
This ’truth’ has been stored in the directory truthmodel, and the results of
that run have been used to generate observation time series at the output lo-
cations. These time series (with some noise added) have been copied to the
stochObserver directory to serve as observations for the filtering run.

The filter run takes the original unperturbed model as input, whereas the "truth’
uses a perturbed version of the original model: the concentrations for substance
1 as disposed of by the factories have been flattened out to a constant value.
The filter process should modify these values in such a way that the results
resemble the truth as much as possible.

To do this the filter modifies the concentration at factory 2 and uses the obser-
vations downstream of factory 2 to optimize the forecast.

e Note that the same black-box configuration is used for the sequential run,
the sequential ensemble run, and for the EnKF run. Identify the part of
the polluteStochModel.xml configuration that is used only by the EnKF
run and not by the others.

e Execute the Ensemble Kalman Filtering run by using the EnKF.oda con-
figuration.
Check how good the run is performing by analyzing to what extent the
filter has adjusted the predictions towards the observation.
Note that the model output files in stochModel/output/work0 only con-
tain a few time steps. Can you explain why? To compare the observations
with the predictions, you have to use the result file produced by the EnKF
algorithm, which can be visualized using plot_movie_enkf.py.

Now let us extend the filtering process by incorporating also the concentration
disposed of by factory 1, and by including the observation locations downstream
of factory 1.

e Make a copy of the involved config files, EnKF.oda,
parallel.xml, polluteStochModel.xml, and

timeSeriesFormatter.xml (you could call them EnKF2.oda,

parallel2.xml, etc.). Adjust the files such that all references to the files
are correct.

e Now adjust polluteStochModel2.xml, and timeSeriesFormatter2.xml
in such a way that the filtering process is extended as described above.

e Run the filtering process by using the EnKF2. oda configuration, and com-
pare the results with the previous version of the filtering process.

6 Exercise: A black-box model — Steady-state
filter

Directory: exercise_black box_steady_state_filter

13

In this section, you will learn how to create and use a steady-state Kalman filter
with OpenDA. The example continues with the black-box reaction-pollution-
model. Make sure you have completed the previous exercise before you start
with this one.

The steady-state Kalman filter is a special case of the Kalman filter. If the
measurement stations are fixed in time and measure with a fixed time-step
and the model is linear and time invariant, then the Kalman gain matrix can
converge to a fixed matrix over time. Sufficient conditions for this are the
stability of the model or the controllability and observability of the model. If
the Kalman gain converges, then it is possible to compute, store, and re-use the
stored gain matrix. This has a large impact on the computational demand of
the algorithm. The steady-state filter uses only a bit more computer time than
the model, which is much faster than the Ensemble Kalman filter. The steady-
state filter is therefore very suitable for real-time applications when it can be
applied. In a strict sense, the steady-state filter has limited applicability, but if
the model is not very non-linear or well constrained by the observations, then
the Kalman gain matrix can still show very little variability over time. In this
case, the steady-state filter can still be used. Clearly, this will not always work,
but the computational advantage is so large that it is often worth considering.

e Run the SequentialSimulation.oda and the EnKf.oda in the folder
exercise_black_box_steady_state_filter. While running, have a look
at the file algorithmsEnKF.xml in there and notice how the Kalman gains
can be written to the disc. You can plot these Kalman gains with the script
plot_gains.py and study how similar they are. Would you conclude that
the Kalman gains are converging? If so, would you conclude that the
steady-state filter is applicable? Irrespective of your answer, continue
with the next step.

e Now run the SteadyStateFilter.oda. What do you notice about the
run time? You can plot the results using the script
plot movie_steady_state.py. How do the results of the steady-state
filter compare to the results of the EnKF?

e Now repeat the steady-state filter run, but first rerun the EnKf with a
larger number of ensembles. What do you notice about the results of the
steady-state filter?

e Finally, rerun the steady-state filter with the Kalman gain at a different
time. You can modify the file

algorithmsSteadyStateFilter.xml to do this. Are the results different?
What is the cause of the remaining differences?

14

	Exercise: Getting Started
	Input files
	Simulation and postprocessing with the double-pendulum model
	An alternative simulation with the double-pendulum model
	An ensemble of model runs

	Exercise: Some basic properties of the EnKF
	Exercise: Localization
	Exercise: A black-box model — Calibration
	Wrapper configuration files

	Exercise: A black-box model — Filtering
	Sequential simulation
	Sequential ensemble simulation
	Parallel computing
	Ensemble Kalman filter

	Exercise: A black-box model — Steady-state filter

