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Installation of OpenDA

Before you can start with the exercises you must first install OpenDA. For the
latest instructions, you are referred to $OPENDA/doc/OpenDA_documentation.pdf,
section ”Installation” or the same document on our website www.openda.org.

For postprocessing with python we assume that the numpy and pyplot mod-
ules are loaded. If not, then you can do this with the commands:

import numpy as np

import matplotlib.pyplot as plt

Listing 1: Python initialize

Please type (or copy-paste) onto the python prompt.

1 Exercise 1 part1: Getting started

Directory: exercise double pendulum part1

A pendulum is a rigid body that can swing under the influence of gravity. It
is attached at the top so it can roatate freely in a two-dimensional plane (x, y).
We will assume a thin rectangular shape with the mass equally distributed. A
double pendulum is a pendulum connected to the end of another pendulum.
Contrary to the regular movement of a pendulum, the motion of a double-
pendulum is very irregular when sufficient energy is put into the system.

The dynamics of a double-pendulum can be descibed with the following equa-
tions ( This example was copied from https://en.wikipedia.org/wiki/Double pendulum
)
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variables θ1, θ2, pθ1 , pθ2 :
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where the x, y-position of the middle of the two segments can be computed as:

x1 =
l

2
sin(θ1) (5)

y1 =
−l
2
cos(θ1) (6)
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1

2
sin(θ2)) (7)

y2 = −l(cos(θ1) +
1

2
cos(θ2)) (8)

This model, although simple, is very nonlinear and has a chaotic nature. Its
solution is very sensitive to the parameters and the initial conditions: a small
difference in those values can lead to a very different solution.

The purpose of this exercise is to get you started with OpenDA. You will
learn to run a model in OpenDA, make modifications to the input files and plot
the results.

• The input for this exercise is located in directory exercise pendulum part1.
For Linux and Mac OS X, go to this directory and start oda run.sh, the
main application of OpenDA. For Windows, start the main application
with oda run gui.bat from the $OPENDA/bin directory. The main ap-
plication allows you to view and edit the OpenDA configuration files, run
your simulations and visualize the results.

• Try to run a simulation with the double pendulum model. You can use
the configuration file simulation unperturbed.oda.

For postprocessing in Python the results are written to
simulation unperturbed results.py. These results can be loaded with:

import simulation_unperturbed_results as unperturbed

# use reload(unperturbed) if unperturbed was loaded

before

Listing 2: Python initialize

We have added a routine plot movie to create an intuitive representation
of the data.
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import pendulum as p #needed only once

p.plot_movie(unperturbed.model_time,unperturbed.x)

Listing 3: Python

To create a time-series plot in Python type:

plt.subplot(2,1,1)

plt.plot(unperturbed.model_time,unperturbed.x[:,0],"b"

) #python counts starting at 0

plt.ylabel(r"$\theta_1$") # use latex for label

plt.subplot(2,1,2)

plt.plot(unperturbed.model_time,unperturbed.x[:,1],"b"

)

plt.ylabel(r"$\theta_2$")

plt.show()

#only needed if interactive plotting is off.

#Set with plt.ioff(), plt.ion()

Listing 4: Python

• Then you can start an alternative simulation with the double-pendulum
model that starts with a slightly different initial condition using the config-
uration file simulation perturbed.oda. The different initial conditions
can be found in modelDoublePendulumStochModel.xml and
modelDoublePendulumStochModel perturbed.xml

• Visualize the unperturbed and perturbed results in a single plot. Make
a movie and a time-series plot of θ1 and θ2 variables. Do you see the
solutions diverging like the theory predicts?

To create a movie with both results in python type:

import simulation_unperturbed_results as unperturbed

import simulation_perturbed_results as perturbed

p.plot_movie(unperturbed.model_time,unperturbed.x,

perturbed.x)

Listing 5: Python initialize

To create a time-series plot with both results in Python type:

plt.subplot(2,1,1)

plt.plot(unperturbed.model_time,unperturbed.x[:,0],"b"

)

#python counts starting at 0

plt.plot(perturbed.model_time,perturbed.x[:,0],"g")

plt.ylabel(r"$\theta_1$") # use latex for label

plt.subplot(2,1,2)
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plt.plot(unperturbed.model_time,unperturbed.x[:,1],"b"

)

plt.plot(perturbed.model_time,perturbed.x[:,1],"g")

plt.ylabel(r"$\theta_2$")

plt.show()

Listing 6: Python

• Next we want to create an ensemble of model runs all with slightly different
initial conditions. You can do this in a number of steps:

– First create the input file simulation ensemble.oda based on
simulation unperturbed.oda. Change the algorithm and the con-
figuration of the algorithm.
hint: the algorithm is called
org.openda.algorithms.kalmanFilter.SequentialEnsembleSimulation.

– Create a configuration file for the Ensemble algorithm (e.g. named
algorithm/SequentialEnsembleSimulation.xml) with the follow-
ing content:

<?xml version="1.0" encoding="UTF-8"?>

<sequentialAlgorithm>

<analysisTimes type="fromObservationTimes" ></

analysisTimes>

<ensembleSize>5</ensembleSize>

<ensembleModel stochParameter="false"

stochForcing="false"

stochInit="true" />

</sequentialAlgorithm>

Listing 7: XML-input for sequentialAlgorithm

Hint: do not forget to reference algorithm/SequentialEnsembleSimulation.xml

in
simulation ensemble.oda and do not forget to give a diferent name
to the output files.

– Run the new configuration with OpenDA.

– make a plot of the first and second variable of the five ensemble
members in a single time-series plot

import ensemble

import simulation_ensemble_results as res

(t,ens)=ensemble.reshape_ensemble(res)

ens1=ens[:,0,:] #note we start counting at 0

ens2=ens[:,1,:]

plt.subplot(2,1,1)

plt.plot(t[1:],ens1,"b")

plt.ylabel(r"$\theta_1$")

plt.subplot(2,1,2)
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plt.plot(t[1:],ens2,"b")

plt.ylabel(r"$\theta_2$")

plt.show()

Listing 8: Python

– Observations of θ1 and θ2 are available as well. Make a plot of the
observations together with the simulation results.

import simulation_unperturbed_results as

unperturbed

plt.subplot(2,1,1)

plt.plot(unperturbed.model_time,unperturbed.x

[:,0],"b")

plt.plot(unperturbed.analysis_time,unperturbed.obs

[:,0],"k+")

plt.ylabel(r"$\theta_1$")

plt.subplot(2,1,2)

plt.plot(unperturbed.model_time,unperturbed.x

[:,1],"b")

plt.plot(unperturbed.analysis_time,unperturbed.obs

[:,1],"k+")

plt.ylabel(r"$\theta_2$")

plt.show()

Listing 9: Python

We can see that although our simulation starts on the right track,
it quickly diverges from the observations. The aim of the Ensemble
Kalman filter or data-assimilation in general, is to keep the model on
track.

2 Exercise 1 part 2: Some basic properties of
the EnKF

Directory: exercise double pendulum part2

In this exercise you will learn how to set up and run the EnKF method in
OpenDA.

• Prepare the input files for a run with the EnKF method. Use the input
files from exercise 1 as template. Hint: the Ensemble Kalman filter is
called org.openda.algorithms.kalmanFilter.EnKF. The algorithm configu-
ration file has the following content

<?xml version="1.0" encoding="UTF-8"?>

<EnkfConfig>

<ensembleSize>10</ensembleSize>

<ensembleModel stochParameter="false"
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stochForcing="false"

stochInit="true" />

</EnkfConfig>

Listing 10: XML-input for EnKF algorithm

Note that we are considering only uncertainty of the initial conditions
here. In general, also uncertainty of the parameters or the model forcing,
such as boundary conditions can be considered.

• Plot the ensemble mean of the first model variable and the observations.
With some luck the solution should track the observations.
For comparison we have also added the configurations for the ’truth’ and
a oda run without data-assimilation called ’initial’.

import simulation_truth_results as truth

import simulation_initial_results as initial

import simulation_enkf_results as enkf

plt.subplot(2,1,1)

plt.plot(initial.model_time,initial.x[:,0],"g")

plt.plot(truth.model_time,truth.x[:,0],"k")

plt.plot(enkf.analysis_time,enkf.x_f_central[:,0],"b

");

plt.legend(("initial","truth","EnKF"))

plt.ylabel(r"$\theta_1$")

plt.subplot(2,1,2)

plt.plot(initial.model_time,initial.x[:,1],"g")

plt.plot(truth.model_time,truth.x[:,1],"k")

plt.plot(enkf.analysis_time,enkf.x_f_central[:,1],"b

");

plt.ylabel(r"$\theta_2$")

plt.xlabel(r"$t$")

plt.show()

Listing 11: Python initialize

• The Ensemble Kalman filter is uses a random number generator. In
OpenDA we can control the initial value of the generator by adding a
line like: <initialSeed type="specify" seedValue="21" /> near the
end of the main configuration file. Do you get the same results if you rerun
with the same value of the initial seed? And what if you use a different
value?

• Look at the observation input file of the StochObserver. The StochOb-
server does not only describe the observations but the accuracy as well.
Can you make a new observation input file with similar observed values
but with a 10 times larger standard deviation for the observation error.
Tip: you can edit the file in OpenOffice or MS Excel or use the find and
replace function of an advanced text editor. Repeat the run with EnKF
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but now for the new observations and plot the first variable of the ensem-
ble means and the observations. What do you see and what is the reason
for this behavior of the algorithm?

• The number of ensemble members controls the accuracy of the ensemble
approximation. What happens if you decrease it to 10 or 6?

3 Exercise 2: Localization

Directory: exercise localization

In this exercise you will learn about localization techniques and how to use
them in OpenDA. This exercise is inspired on the example model and experi-
ments from ”Impacts of localisation in the EnKF and EnOI: experiments with a
small model”, Peter R. Oke, Pavel Sakov and Stuart P. Corney, Ocean Dynamics
(2007) 57: 32-45.

The model we use is a simple circular advection model

∂a

∂t
+ u

∂a

∂x
= 0 (9)

where u=1 is the speed of advection, a is a model variable , t is time and x
is a space ranging from 1 to 1000 with grid spacings of 1. The computational
domain is periodic in x.

In this model there are two related variables a and b where b is initialised
with a balance relationship:

b = 0.5 + 10
da

dx
(10)

and propagated with an advection model similar to the one for a, i.e.:

∂b

∂t
+ u

∂b

∂x
= 0 (11)

Since a and b are propagated with the same flow, the balance relationship will
remain valid also for t > 0. The relationship between a and b is motivated by
the geostrophic balance relationship between pressure (a) and velocity (b) in
oceanographic and atmospheric applications.

In this experiment we will only observe and assimilate a and investigate how
both a as b are updated. The ensemble is carefully constructed in order to have
the right statistics. The initial ensembles are generated off line and they will be
read when the model is initialised in OpenDA.

• Investigate the sript generate ensemble.py and figure out how the en-
sembles are generated.

• Run python script generate ensemble.py to generate ensembles, obser-
vations and true state for a 25, 50 and 100 ensemble experiment.

• Run the experiment for 50 ensemble members (enkf 50.oda).

• The variables a, b can be compared to the true state using the python
script plot results.py.
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• Run the experiment for 25 ensembles, copy the script plot results.py to
e.g. plot results 25.py and adjust it in order to read the results from
enkf25 results.py. (change 2nd line of the plot results.py script.
You will see that the 25 ensemble run is not able to improve the model.

• Create input to run a 100 ensemble experiment. Note: do not forget to
change the name of the output file (section resultWriter) to avoid that
your previous generated results are overwritten.

• Run an experiment with 25 ensembles with localization (enkf 25 loc.oda)
and generate the plots.

• The results (for 25 ensembles) with localization should look better than
the the experiment without localization.

• Investigate whether the relation between a and b is violated by the various
experiments. You can use the script check balance.py.

• Try changing the localization radius (initial value is 50) and see how the
performance of the algorithms changes (both for results as balance be-
tween a and b). You can plot the localization weight functions for each
observation location (rho 0, rho 1, rho 2 and rho 3) as well.

4 Exercise 3: A black box model - Filtering

Directory: exercise black box enkf polution

A simple way to connect a model to OpenDA is by letting OpenDA access
the input and output files of the model. OpenDA cannot directly understand
the input and output files of an arbitrary model. Some code has to be written
such that the black box model implementation of OpenDA can read and write
these files. In this exercise you will learn how to connect an existing model to
OpenDA assuming that all the input and output files of the model can indeed
be accessed by OpenDA. The exercise focusses on the configuration of the black
box wrapper in OpenDA.

The model describes the advection of two chemical substances. The first
substance c1 is emitted as a pollutant by a number sources. However, in this
case this substance reacts with the oxygen in the air to form a more toxic
substance c2. The model implements the following equations:

∂c1
∂t

+ u
∂c1
∂x

= −1/Tc1 (12)

∂c2
∂t

+ u
∂c2
∂x

= 1/Tc1 (13)

In the directory exercise black box enkf polution/original model/ you
will find:

1. model executable reactive pollution model.py (linux and mac) and
reactive pollution model.exe (windows)
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2. config.yaml the model configuration file

3. forcings the forcings of the model (injection of pollutant)

4. input the initial model state

• Run the model, in the original model directory from the command line,
not using OpenDA.

The model generates the output files c1 locA,c1 locB, c1 locC, c1 locA, c2 locB,
c2 locC with timeseries of substance c1 and c2 at three predefinined locations
in the model. The folders maps contains output files with the conentration of
c1 and c2 on each grid point at specfied times. The folder restart contains
files that allows the model to restart; continue the computations from the point
where a restart file has been written.

• Investigate the input and output files of the model

• generate a movie by running the script plot movie orig.py script from
the exercise black box enkf polution (!) directory. This allows you
to study the behaviour of the model.

4.1 Wrapper configuration files

The input and outputfiles of this model are all easy to interpret ASCII files.
Therefore we do not need model specific routines to couple this model to OpenDA.

When you couple an arbitrary model to OpenDA and you want to use the
black box coupler there are two appoaches:

• write a pre and post processing sript that translates the (relevant) model
files into a more generic format that is already supported (e.g. ASCII or
NetCDF).

• write your own adapter in java (dataobject) to read and write the model
input and output files.

A black box wrapper configuration usually consists of three xml files. For
our pollution model these files are:

1. polluteWrapper.xml: This file specifies how OpenDA can run the model,
which input and output files are involved and dataobjects are used to
interpret the model files.
This file consists of the parts:

• aliasDefinitions: This is a list of strings that can be aliased in
the other xml files. This helps to make the wrapperxml-file more
generic. E.g. the alias definition %outputFile% can be used to refer
to the output file of the model, without having to know the actual
name of that output file.
Note the special alias definition %instanceNumber%. This will be re-
placed internally at runtime with the member number of each created
model instance.

• run: the specification of what commands need to be executed when
the model is run.

9



• inputOutput: the list of ’input/output objects’, usually files, that
are used to access the model, i.e. to adjust the model’s input, and to
retrieve the model’s results. For each ’ioObject’ one must specify:

– the java class that handles the reading from and/or writing to
the file

– the identifier of the ioObject, so that the model configuration file
can refer to it when specifying the model variables that can be
accessed by OpenDA, the so called ’exchange items’ (see below)

– optionally, the arguments that are needed to initialize the ioOb-
ject, i.e. to open the file.

2. polluteModel.xml: This is the main specification of the (deterministic)
model. It contains the following elements:

• wrapperConfig: A reference to the wrapper config file mentioned
above.

• aliasValues: The actual values to be used for the aliases defined in
the wrapper config file. For instance the %configFile% alias is set to
the value ”config.yaml”.

• timeInfoExchangeItems: The name of the model variables (the ’ex-
change items’) that can be accessed to modify the start and end time
of the period to that the model should compute to propagate itself
to the next analysis time.

• exchangeItems: The model variables that are allowed to be accessed
by OpenDA, for instance parameters, boundary conditions, and com-
puted values at certain locations. Each variable exchange item con-
sists of its id, the ioObject that contains the item, and the ’element
name’, the name of the exchange item in the ioObject.

3. polluteStochModel.xml: This is the specification of the stochastic model.
It contains of two parts:

• modelConfig: A reference to the deterministic model configuration
file mentioned above polluteModel.xml.

• vectorSpecification: The specification of the vectors that will be
accessed by the OpenDA algorithm. These vectors are grouped in
two parts:

– The state that is manipulated by an OpenDA filtering algorithm,
i.e. the state of the model combined with the noise model(s).

– The so called predictions, i.e. the values on observation locations
as computed by the model.

Start with a single OpenDA-run to understand where the model results
appear for this configuration:

• Have a look at the files polluteWrapper.xml, polluteModel.xml and
polluteStochModel.xml, and recognize the various items mentioned above.
Start the OpenDA GUI from the public/bin directory and run the model
by using the Simulation.oda configuration. Note that the actual model
results are available in the directory where the black box wrapper has let
the model perform its computation: work/work0.
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4.2 Sequential simulation

We will first run our polution model from OpenDA using the SequentialSim-
ulation algorithm. This run is exaclty the same as running the model outside
openda. The difference is however that we provide a set of observations and run
the model and restart the model between the observation times. Output will be
available at the end in the generic OpenDa format that allows us to compare
the model results with the available observations of the system.

• Run the model within OpenDA by using the
SequentialSimulation.oda configuration. This will create the result file
sequentialSimulation results.py. Use the script plot movie seq.py

to visualize the simulation results. The script plot obs seq.py shows the
difference in time between the model results (prediction) and observed
values of the system

4.3 Sequential ensemble simulation

The next step is running an ensemble of simulations. In this case we consider
our main source of uncertainty the injection of polutant c1 in the model. Similar
to the sequential simulation we do not assmilate any data (yet).

• Run an ensemble forecast model by using the
SequentialEnsembleSimulation.oda configuration. On which variable
does the algorithm impose stochastic forcing?
Have a look at the work directory, and note that the black box wrapper
created the required ensemble members by repeatedly copying the tem-
plate directory stochModel/input to
output/work<N>.

• Compare the result between the mean of the ensemble and the results
from SequentialSimulation.oda. Note the differences. You can use the
script plot movie enssim.py.

4.4 parallel computing

Running the ensembles takes a lot of time, especially starting the model takes
quite some time compared to the actual computation time. Most computers
have multiple cores and the reactive pollution model only uses one core, so
we can use our cores to propage multiple ensemble members foreward in time
simultaniously.

• compare the configurations SequentialEnsembleSimulation.oda and
enkf.oda which uses parallel propagation of ensemble members. Set the
number of simultanious models that corresponds to the number of cores
on your computer (maxThreads).

4.5 ensemble kalman filter

Now let us have a look at the configuration for performing OpenDA’s Ensem-
ble Kalman Filtering on our black box model, using a twin experiment as an
example. The model has been run with the ’real’ values (time dependent)for
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the concentrations for substance 1 as disposed by factory 1 and factory 2. This
’truth’ stored in the directory truthmodel, and the results of that run have
been used to generate observation time series at the output locations. These
time series (with some noise added) have been copied to the stochObserver

directory to serve as observations for the filtering run.
The filter run takes the original unperturbed model as input, while the ’truth’

uses a perturbed version of the original model: the concentrations for substance
1 as disposed by factories have been flattened out to a constant value. The filter
process should modify these values in such a way that the results resemble the
truth as much as possible.

To do this the filter modifies the concentration at factory 2, and uses the
observations downstream of factory 2 to optimize the forecast.

• Note that the same black box configuration is used for the sequential run,
the sequential ensemble run, and for the EnKF run. Identify the part of
the polluteStochModel.xml configuration that is used only by the EnKF
run, and not by the others.

• Execute the Ensemble Kalman Filtering run by using the EnKF.oda con-
figuration.
Check how good the run is performing, by analyzing to what extent the
filter has adjusted the predictions towards the observation.
Note that the model output files in stochModel/output/work0 only con-
tains a few time steps. Can you explain why?
So to compare the observations with the predictions you have to use the
result file produced by the EnKF algorithm which can be visualised using
plot movie enkf.py.

Now let us extend the filtering process by incorporating also the concentra-
tion disposed by factory 1, and by including the observation locations down-
stream of factory 1.

• Make a copy of the involved config files, EnKF.oda,
parallel.xml, polluteStochModel.xml and timeSeriesFormatter.xml

(you could call them EnKF2.oda, parallel2.xml etc.
Adjust the files such that all references to the files are correct.

• Now adjust polluteStochModel2.xml and timeSeriesFormatter2.xml

in such a way that the filtering process is extended as described above.

• Run the filtering process by using the EnKF2.oda configuration, and com-
pare the results with the previous version of the filtering process.
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