
OpenDA Course and Exercises

Nils van Velzen, Martin Verlaan, Stef Hummel

March 10, 2023

Contents

1 Double Pendulum 2
1.1 Input files . 3
1.2 Simulation and postprocessing with the double pendulum model 3

1.2.1 simulation . 3
1.2.2 postprocessing . 3

1.3 An alternative simulation with the double-pendulum model . . . 4
1.4 An ensemble of model runs . 5

2 Some basic properties of the EnKF with Lorenz 3 variable
model 7

3 Steady-state Kalman Filter 8

4 Exercise 4: A black box model - Calibration 10
4.1 Wrapper configuration files . 11

5 Exercise 5: A black box model - Filtering 13
5.1 Sequential simulation . 13
5.2 Sequential ensemble simulation 13
5.3 parallel computing . 13
5.4 ensemble kalman filter . 13

6 Exercise 6: Writing your own toy model 14

7 Exercise 7: Localization 16

Installation of OpenDA

Before you can start with the exercises you must first install OpenDA. For the
latest instructions, you are referred to $OPENDA/doc/OpenDA_domunentation.pdf,
section “Installation” or the same document on our website www.openda.org.

1

www.openda.org

1 Double Pendulum

Directory: exercise_double_pendulum_part1

A pendulum is a rigid body that can swing under the influence of gravity. It
is attached at the top so it can rotate freely in a two-dimensional plane (x, y).
We will assume a thin rectangular shape with the mass equally distributed. A
double pendulum is a pendulum connected to the end of another pendulum.
Contrary to the regular movement of a pendulum, the motion of a double-
pendulum is very irregular when sufficient energy is put into the system.

The dynamics of a double-pendulum can be described with the following
equations. (This example was copied from https://en.wikipedia.org/wiki/

Double_pendulum)
With variables θ1, θ2, pθ1 , pθ2 :

dθ1
dt

=
6

ml2
2pθ1 − 3 cos(θ1 − θ2)pθ2
16− 9 cos2(θ1 − θ2)

(1)

dθ2
dt

=
6

ml2
8pθ2 − 3 cos(θ1 − θ2)pθ1
16− 9 cos2(θ1 − θ2)

(2)

dpθ1
dt

= −1

2
ml2

(
dθ1
dt

dθ2
dt

sin(θ1 − θ2) + 3
g

l
sin(θ1)

)
(3)

dpθ1
dt

= −1

2
ml2

(
−dθ1

dt

dθ2
dt

sin(θ1 − θ2) +
g

l
sin(θ2)

)
(4)

where the x, y-position of the middle of the two segments can be computed as:

x1 =
l

2
sin(θ1) (5)

y1 =
−l

2
cos(θ1) (6)

x2 = l(sin(θ1) +
1

2
sin(θ2)) (7)

y2 = −l(cos(θ1) +
1

2
cos(θ2)) (8)

This model, although simple, is very nonlinear and has a chaotic nature. Its
solution is very sensitive to the parameters and the initial conditions: a small
difference in those values can lead to a very different solution.

The purpose of this exercise is to get you started with OpenDA. You will
learn to run a model in OpenDA, make modifications to the input files and plot
the results.

2

https://en.wikipedia.org/wiki/Double_pendulum
https://en.wikipedia.org/wiki/Double_pendulum

1.1 Input files

The input for this exercise is located in directory exercise_pendulum_part1.
For Linux and Mac OS X, go to this directory and start oda_run.sh, the

main application of OpenDA. For Windows, start the main application with
oda_run_gui.bat from the $OPENDA/bin directory. The main application allows
you to view and edit the OpenDA configuration files, run your simulations and
visualize the results.

1.2 Simulation and postprocessing with the double pen-
dulum model

1.2.1 simulation

Try to run a simulation with the double pendulum model. You can use the
configuration file simulation_unperturbed.oda.

1.2.2 postprocessing

For postprocessing in Matlab the results are written to the file

simulation_unperturbed_results.m

Next, start Matlab and load the results. We have added a routine plot_movie

to create an intuitive representation of the data. Please type (or copy-paste):

1 [t,unperturbed,tobs,obs]= ...

2 load_results(’simulation_unperturbed_results’);

3 plot_movie(t,unperturbed)

Listing 1: Matlab

For postprocessing in Python the results are written to the file

simulation unperturbed results.py

These results can be loaded with:

1 import simulation_unperturbed_results as unperturbed

2 # use reload(unperturbed) if unperturbed was loaded before

Listing 2: Python initialize

We have added a routine plot_movie to create an intuitive representation of the
data.

1 import pendulum as p #needed only once

2 p.plot_movie(unperturbed.model_time,unperturbed.x)

Listing 3: Python

To create a time-series plot in Matlab type:

3

1 subplot(2,1,1);

2 plot(t,unperturbed(1,:),’b-’);

3 ylabel(’\theta_1’);

4 subplot(2,1,2);

5 plot(t,unperturbed(2,:),’b-’);

6 ylabel(’\theta_2’);

7 xlabel(’time’);

Listing 4: Matlab

To create a time-series plot in Python type:

1 plt.subplot(2,1,1)

2 plt.plot(unperturbed.model_time,unperturbed.x[:,0],"b")

3 # Python counts starting at 0

4 plt.ylabel(r"θ_1") # use latex for label

5 plt.subplot(2,1,2)

6 plt.plot(unperturbed.model_time,unperturbed.x[:,1],"b")

7 plt.ylabel(r"θ_2")
8 plt.show()

9 # only needed if interactive plotting is off.

10 # Set with plt.ioff(), plt.ion()

Listing 5: Python

1.3 An alternative simulation with the double-pendulum
model

Then you can start an alternative simulation with the double-pendulum model
that starts with a slightly different initial condition using the configuration file
simulation perturbed.oda. The different initial conditions can be found in
modelDoublePendulumStochModel.xml and modelDoublePendulumStochModel perturbed.xml

Visualize the unperturbed and perturbed results in a single plot. Make a
movie and a time-series plot of θ1 and θ2 variables. Do you see the solutions
diverging like the theory predicts?

1 [tu,unperturbed,tobs1,obs1]=load_results(’

simulation_unperturbed_results’);

2 [tp,perturbed,tobs2,obs2]=load_results(’

simulation_perturbed_results’);

3 figure(1);clf;subplot(2,1,1);

4 plot(tu,unperturbed(1,:),’b’);

5 hold on;

6 plot(tp,perturbed(1,:),’g’);

7 hold off;

8 legend(’unperturbed’,’perturbed’)

9 subplot(2,1,2);

4

10 plot(tu,unperturbed(2,:),’b’);

11 hold on;

12 plot(tp,perturbed(2,:),’g’);

13 hold off;

Listing 6: Matlab

To create a movie with both results in python type:

1 import simulation_unperturbed_results as unperturbed

2 import simulation_perturbed_results as perturbed

3 p.plot_movie(unperturbed.model_time, unperturbed.x, perturbed

.x)

Listing 7: Python initialize

To create a time-series plot with both results in Python type:

1 plt.subplot(2,1,1)

2 plt.plot(unperturbed.model_time,unperturbed.x[:,0],"b")

3 # Python counts starting at 0

4 plt.plot(perturbed.model_time,perturbed.x[:,0],"g")

5 plt.ylabel(r"θ_1") # use LaTeX for label

6 plt.subplot(2,1,2)

7 plt.plot(unperturbed.model_time,unperturbed.x[:,1],"b")

8 plt.plot(perturbed.model_time,perturbed.x[:,1],"g")

9 plt.ylabel(r"θ_2")
10 plt.show()

Listing 8: Python

1.4 An ensemble of model runs

Next, we want to create an ensemble of model runs all with slightly different
initial conditions. You can do this in a number of steps:

• First create the input file simulation ensemble.oda based on
simulation unperturbed.oda. Change the algorithm and the configura-
tion of the algorithm.
hint: the algorithm is called
org.openda.algorithms.kalmanFilter.SequentialEnsembleSimulation.

• Create a configuration file for the Ensemble algorithm (e.g. named
algorithm/SequentialEnsembleSimulation.xml) with the following con-
tent:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <sequentialAlgorithm>

5

3 <analysisTimes type="fromObservationTimes"></

analysisTimes>

4 <ensembleSize>5</ensembleSize>

5 <ensembleModel stochParameter="false"

6 stochForcing="false"

7 stochInit="true" />

8 </sequentialAlgorithm>

Listing 9: XML-input for sequentialAlgorithm

Hint: do not forget to reference algorithm/SequentialEnsembleSimulation.xml

in
simulation ensemble.oda and do not forget to give a diferent name to
the output files.

• Run the new configuration with OpenDA.

• make a plot of the first and second variable of the five ensemble members
in a single time-series plot

1 [t,ens]=load_ensemble(’simulation_ensemble_results’);

2 ens_th1=reshape(ens(1,:,:),size(ens,2),size(ens,3));

3 ens_th2=reshape(ens(2,:,:),size(ens,2),size(ens,3));

4 clf; subplot(2,1,1);

5 plot(t(2:end),ens_th1);

6 ylabel(’\theta_1’);

7 subplot(2,1,2);

8 plot(t(2:end),ens_th2);

9 ylabel(’\theta_2’);

10 xlabel(’time’);

Listing 10: Matlab

1 import ensemble

2 import simulation_ensemble_results as res

3 (t,ens)=ensemble.reshape_ensemble(res)

4 ens1=ens[:,0,:] #note we start counting at 0

5 ens2=ens[:,1,:]

6 plt.subplot(2,1,1)

7 plt.plot(t[1:],ens1,"b")

8 plt.ylabel(r"θ_1")
9 plt.subplot(2,1,2)

10 plt.plot(t[1:],ens2,"b")

11 plt.ylabel(r"θ_2")
12 plt.show()

Listing 11: Python

6

• Observations of θ1 and θ2 are available as well. Make a plot of the obser-
vations together with the simulation results.

1 [t,unperturbed,tobs,obs]= ...

2 load_results(’simulation_unperturbed_results’);

3 subplot(2,1,1);

4 plot(t,unperturbed(1,:),’b-’);

5 hold on

6 plot(tobs,obs(1,:),’k+’);

7 hold off

8 ylabel(’\theta_1’);

9 subplot(2,1,2);

10 plot(t,unperturbed(2,:),’b-’);

11 hold on

12 plot(tobs,obs(2,:),’k+’);

13 hold off

14 ylabel(’\theta_2’);

15 xlabel(’time’);

Listing 12: Matlab

1 import simulation_unperturbed_results as unperturbed

2 plt.subplot(2,1,1)

3 plt.plot(unperturbed.model_time,unperturbed.x[:,0],"b")

4 plt.plot(unperturbed.analysis_time,unperturbed.obs[:,0],

"k+")

5 plt.ylabel(r"θ_1")
6 plt.subplot(2,1,2)

7 plt.plot(unperturbed.model_time,unperturbed.x[:,1],"b")

8 plt.plot(unperturbed.analysis_time,unperturbed.obs[:,1],

"k+")

9 plt.ylabel(r"θ_2")
10 plt.show()

Listing 13: Python

We can see that although our simulation starts on the right track, it
quickly diverges from the observations. The aim of the Ensemble Kalman
filter or data-assimilation in general, is to keep the model on track.

2 Some basic properties of the EnKF with Lorenz
3 variable model

Directory: exercise lorenz 3var part2

In this exercise you will learn how to set up and run the EnKF method in
OpenDA.

7

• Prepare the input files for a run with the EnKF method. Use the input files
from exercise lorenz 3var part1 as template. Hint: the Ensemble Kalman
filter is called org.openda.algorithms.kalmanFilter.EnKF. The algorithm
configuration file has the following content

1 <?xml version="1.0" encoding="UTF-8"?>

2 <EnkfConfig>

3 <ensembleSize>10</ensembleSize>

4 <ensembleModel stochParameter="false"

5 stochForcing="false"

6 stochInit="true" />

7 </EnkfConfig>

8

Listing 14: XML-input for EnKF algorithm

• Plot the ensemble mean of the first model variable and the observations.
With some luck the solution should track the observations.
Tip: use the scripts load obs.m and load ensemble.m for reading the
data into matlab (cf. Exercise1), or load ensemble.py for python.

• Look at the observation input file of the StochObserver. The StochOb-
server does not only describe the observations but the accuracy as well.
Can you make a new observation input file with similar observed values
but with a 10 times larger standard deviation for the observation error.
Tip: you can edit the file in OpenOffice or MS Excel or use the find and
replace function of an advanced text editor.

• Repeat the run with EnKF but now for the new observations and plot the
first variable of the ensemble means and the observations. What do you
see and what is the reason for this behavior of the algorithm?

• The number of ensemble members controls the accuracy of the ensemble
approximation. What happens if you increase the number to e.g. 100,
or decrease it to 5? Use (initially) observations with a standard devia-
tion of 5.0. Experiment as well with various standard deviations of the
observations.

3 Steady-state Kalman Filter

Directory: exercise steady state filter

In this section you will learn how to create and use a steady-state Kalman
filter with OpenDA. The example model we use in this section is a 1-dimensional
wave model:

∂h

∂t
+D

∂v

∂x
= 0 (9)

∂v

∂t
+ g

∂h

∂x
+ cfv = 0 (10)

(11)

8

With h(x, t) the (water) level above the reference plane, v(x, t) the velocity,
D(x) the depth under the reference plane, g the gravitational acceleration cf
the friction coefficient and x ∈ [0, L] the location. For our model we have
selected the boundary values v(x = L, t) = 0 and h(x = 0, t) = 1

5sin(2πt). An
AR(1) model is defined on the left water level boundary.

• Look at the implementation of the model in WaveStochModelInstance.java,
in the directory simple wave model/java/src/org/openda/. See how
the state is defined and how the model is discretized. If you want you
can compile the model using ant build as we will explain in excercise 6.
However to make it easy for you, you will find the compiled version of this
model,simple wave model.jar in the directory simple wave model/bin.

• The model represents a ”user” model that is not part of the OpenDA
distribution. Therefore you have to copy the model jar-file to the bin
directory of your OpenDA installation. In this way OpenDA can find this
model.

• Run the model (waveSimulation.oda) and visualize the model results
(plot movie.m or plot movie.py). Do not forget to add the jar-file of
the model to the CLASSPATH variable, or to copy the jar-file into the bin
directory of your OpenDA version

• Adjust the input files in order to run the model with stochastic forcings.

• Generate water level observations from this stochastic run. We need ob-
servations at (approximately) x = 1

4L, x = 1
2L and x = 3

4L. You can use
the script generate obs.m for this task. We want to have observations at
t = 0.1, 0.2, ..., 10.0, (initially) select a standard deviation of 0.05.

• Run the Ensemble Kalman filter (waveEnkf.oda). This run will generate
and write gain matrices at specified times. Find where and how this is
specified in the input.

• Plot the columns of the gain matrices. (The script plot gains.m or
plot gains.py plots the water level part of the gain matrices). What
do these columns mean?

• (Re)generate the gain matrices using different numbers of ensembles. When
you compare the gain matrices, what do you notice. Note: The algorithm
will generate an enormous amount of output when you run the EnKF with
a very large number of ensembles (e.g. 500). You can suppress the output
by commenting out (or remove) the resultWriter-part of the oda-input
file.

• Use the generated steady state gain matrices for a steady state Kalman
run (waveSteadystate.oda). Compare the performance of:

– a (non-stochastic) run without filtering,

– an EnkF run with various numbers of ensembles (do not forget to
reinstate the resultWriter if you have switched it off),

– the various steady state gains.

9

you can use the scripts plot obs sim.m, plot obs ens.m and
plot obs steady.m and similar routines for python.

• Generate (observations) gain matrices but now for only a single observa-
tion. Make sure that the observed values are exactly the same as in the
3 observation observer. Compare the columns of the 3-observation gain
matrices to the single observation matrices. What is the main difference
and why?

4 Exercise 4: A black box model - Calibration

A simple way to connect a model to OpenDA is by letting OpenDA access the
input and output files of the model. OpenDA cannot directly understand the
input and output files of an arbitrary model. Some code has to be written
such that the black box model implementation of OpenDA can read and write
these files. In this exercise you will learn how to connect an existing model to
OpenDA assuming that all the input and output files of the model can indeed
be accessed by OpenDA. The exercise focusses on the configuration of the black
box wrapper in OpenDA.

The model describes the advection of two chemical substances. The first
substance c1 is emitted as a pollutant by a number sources. However, in this
case this substance reacts with the oxygen in the air to form a more toxic
substance c2. The model implements the following equations:

∂c1
∂t

+ u
∂c1
∂x

= −1/Tc1 (12)

∂c2
∂t

+ u
∂c2
∂x

= 1/Tc1 (13)

In the directory exercise 4/original model/ you will find:

1. model executable reactive pollution model.py (linux and mac) and
reactive pollution model.exe (windows)

2. config.yaml the model configuration file

3. forcings the forcings of the model (injection of pollutant)

4. input the initial model state

• Run the model, in the original model directory from the command line,
not using OpenDA.

The model generates the output files c1 locA,c1 locB, c1 locC, c1 locA, c2 locB,
c2 locC with timeseries of substance c1 and c2 at three predefinined locations
in the model. The folders maps contains output files with the conentration of
c1 and c2 on each grid point at specfied times. The folder restart contains
files that allows the model to restart; continue the computations from the point
where a restart file has been written.

• Investigate the input and output files of the model

10

• generate a movie by running the script plot movie orig.py script from
the exercise 4 (!) directory. This allows you to study the behaviour of
the model.

4.1 Wrapper configuration files

The input and outputfiles of this model are all easy to interpret ASCII files.
Therefore we do not need model specific routines to couple this model to OpenDA.

When you couple an arbitrary model to OpenDA and you want to use the
black box coupler there are two appoaches:

• write a pre and post processing sript that translates the (relevant) model
files into a more generic format that is already supported (e.g. ASCII or
NetCDF).

• write your own adapter in java (dataobject) to read and write the model
input and output files.

A black box wrapper configuration usually consists of three xml files. For
our pollution model these files are:

1. polluteWrapper.xml: This file specifies how OpenDA can run the model,
which input and output files are involved and dataobjects are used to
interpret the model files.
This file consists of the parts:

• aliasDefinitions: This is a list of strings that can be aliased in
the other xml files. This helps to make the wrapperxml-file more
generic. E.g. the alias definition %outputFile% can be used to refer
to the output file of the model, without having to know the actual
name of that output file.
Note the special alias definition %instanceNumber%. This will be re-
placed internally at runtime with the member number of each created
model instance.

• run: the specification of what commands need to be executed when
the model is run.

• inputOutput: the list of ’input/output objects’, usually files, that
are used to access the model, i.e. to adjust the model’s input, and to
retrieve the model’s results. For each ’ioObject’ one must specify:

– the java class that handles the reading from and/or writing to
the file

– the identifier of the ioObject, so that the model configuration file
can refer to it when specifying the model variables that can be
accessed by OpenDA, the so called ’exchange items’ (see below)

– optionally, the arguments that are needed to initialize the ioOb-
ject, i.e. to open the file.

2. polluteModel.xml: This is the main specification of the (deterministic)
model. It contains the following elements:

• wrapperConfig: A reference to the wrapper config file mentioned
above.

11

• aliasValues: The actual values to be used for the aliases defined in
the wrapper config file. For instance the %configFile% alias is set to
the value ”config.yaml”.

• timeInfoExchangeItems: The name of the model variables (the ’ex-
change items’) that can be accessed to modify the start and end time
of the period to that the model should compute to propagate itself
to the next analysis time.

• exchangeItems: The model variables that are allowed to be accessed
by OpenDA, for instance parameters, boundary conditions, and com-
puted values at certain locations. Each variable exchange item con-
sists of its id, the ioObject that contains the item, and the ’element
name’, the name of the exchange item in the ioObject.

3. polluteStochModel.xml: This is the specification of the stochastic model.
It contains of two parts:

• modelConfig: A reference to the deterministic model configuration
file mentioned above polluteModel.xml.

• vectorSpecification: The specification of the vectors that will be
accessed by the OpenDA algorithm. These vectors are grouped in
two parts:

– The state that is manipulated by an OpenDA filtering algorithm,
i.e. the state of the model combined with the noise model(s).

– The so called predictions, i.e. the values on observation locations
as computed by the model.

Start with a single OpenDA-run to understand where the model results
appear for this configuration:

• Have a look at the files polluteWrapper.xml, polluteModel.xml and
polluteStochModel.xml, and recognize the various items mentioned above.
Start the OpenDA GUI from the public/bin directory and run the model
by using the Simulation.oda configuration. Note that the actual model
results are available in the directory where the black box wrapper has let
the model perform its computation: work/work0.

Directory: exercise black box calibration polution

In this exercise, we will calibrate the value of the reaction-rate constant.
The algorithm used in this example is the Dud (which stands for Doesn’t Use
Derivative).

• Have a look at the Dud.oda and the configuration files it refers to. Run it
from the OpenDA GUI and have a look at the results. What could you
do to improve the results?

• Figure out where to change the control parameters for the calibration
procedure and play around with the settings to improve your results.

Calibration runs normally take longer than a few minutes. In that case, it
becomes convenient to be able to restart from a previous run.

• Adapt the configuration in such a way that you are able to restart the
Dud.oda from the result of a previous run.

12

5 Exercise 5: A black box model - Filtering

5.1 Sequential simulation

We will first run our polution model from OpenDA using the SequentialSim-
ulation algorithm. This run is exaclty the same as running the model outside
openda. The difference is however that we provide a set of observations and run
the model and restart the model between the observation times. Output will be
available at the end in the generic OpenDa format that allows us to compare
the model results with the available observations of the system.

• Run the model within OpenDA by using the
SequentialSimulation.oda configuration. This will create the result file
sequentialSimulation results.py. Use the script plot movie seq.py

to visualize the simulation results. The script plot obs seq.py shows the
difference in time between the model results (prediction) and observed
values of the system

5.2 Sequential ensemble simulation

The next step is running an ensemble of simulations. In this case we consider
our main source of uncertainty the injection of polutant c1 in the model. Similar
to the sequential simulation we do not assmilate any data (yet).

• Run an ensemble forecast model by using the
SequentialEnsembleSimulation.oda configuration. On which variable
does the algorithm impose stochastic forcing?
Have a look at the work directory, and note that the black box wrapper
created the required ensemble members by repeatedly copying the tem-
plate directory stochModel/input to
output/work<N>.

• Compare the result between the mean of the ensemble and the results
from SequentialSimulation.oda. Note the differences. You can use the
script plot movie enssim.py.

5.3 parallel computing

Running the ensembles takes a lot of time, especially starting the model takes
quite some time compared to the actual computation time. Most computers
have multiple cores which we can use to propage multiple ensemble members
foreward in time simultaniously.

• compare the configurations SequentialEnsembleSimulation.oda and
enkf.oda which uses parallel propagation of ensemble members. Set the
number of simultanious models that corresponds to the number of cores
on your computer (maxThreads).

5.4 ensemble kalman filter

Now let us have a look at the configuration for performing OpenDA’s Ensem-
ble Kalman Filtering on our black box model, using a twin experiment as an

13

example. The model has been run with the ’real’ values (time dependent)for
the concentrations for substance 1 as disposed by factory 1 and factory 2. This
’truth’ stored in the directory truthmodel, and the results of that run have
been used to generate observation time series at the output locations. These
time series (with some noise added) have been copied to the stochObserver

directory to serve as observations for the filtering run.
The filter run takes the original model as input, which actually is a perturbed

version of the ’truth’ model: the concentrations for substance 1 as disposed by
factories have been flattened out to a constant value. The filter process should
modify these values in such a way that the results resemble the truth as much
as possible.

To do this the filter modifies the concentration at factory 2, and uses the
observations downstream of factory 2 to optimize the forecast.

• Note that the same black box configuration is used for the sequential run,
the sequential ensemble run, and for the EnKF run. Identify the part of
the polluteStochModel.xml configuration that is used only by the EnKF
run, and not by the others.

• Execute the Ensemble Kalman Filtering run by using the EnKF.oda con-
figuration.
Check how good the run is performing, by analyzing to what extent the
filter has adjusted the predictions towards the observation.
Note that the model output files in stochModel/output/work0 only con-
tains a few time steps. Can you explain why?
So to compare the observations with the predictions you have to use the
result file produced by the EnKF algorithm which can be visualised using
plot movie enkf.py.

Now let us extend the filtering process by incorporating also the concentra-
tion disposed by factory 1, and by including the observation locations down-
stream of factory 1.

• Make a copy of the involved config files, EnKF.oda,
parallel.xml, polluteStochModel.xml and timeSeriesFormatter.xml

(you could call them EnKF2.oda, parallel2.xml etc.
Adjust the files such that all references to the files are correct.

• Now adjust polluteStochModel2.xml and timeSeriesFormatter2.xml

in such a way that the filtering process is extended as described above.

• Run the filtering process by using the EnKF2.oda configuration, and com-
pare the results with the previous version of the filtering process.

6 Exercise 6: Writing your own toy model

Before you start:
In order to be able to compile your model you need to have a (current) version
installed on your computer of:

14

• The Java Development Kit (JDK). You can download this from
www.oracle.com1

• Apache Ant, this is a command line tool we use for building your java
code. You can download Ant from ant.apache.org.

In this exercise you will learn how to code your own model and use it in
OpenDA. The directory exercise 6 contains a template of the code for the 1-D
advection model we will create in this exercise. The content of this directory is
similar to the OpenDA directories you have seen in the previous exercises. The
difference is that we will not use a model that is already part of the OpenDA
distribution but instead our own model. The model code can be found in the
directory simple advection model.

The model you will create is build as an extension of the OpenDA
simpleStochModelInstance. This will simplify and reduce the amount of pro-
gramming because a significant part of the implementation is already available.
For more complex models you might need to implement all methods of the
IStochModelInstance class.

In the directory
exercise 6/simple advection model/java/src/org/openda you will find the
two java source files AdvectionStochModelFactory.java and
AdvectionStochModelInstance.java. The first file implements the ModelFac-
tory class. The model factory is a class in OpenDA that is responsible for cre-
ating model instances (e.g. the members of an ensemble Kalman filter). The
second file implements the model. This is the file you have to edit in this
exercise.

• Consider the 1-dimensional advection model:

∂c

∂t
= v

∂c

∂x
(14)

where c typically describes the density of the particle being studied and u
is the velocity. On the left boundary c is specified as cb(t) = 1+ 1

2sin(5πt).
Discretize this model on the interval x = [0..1] with velocity v = 1 using a
1st order upwind scheme on a grid of 51 points. The time step is chosen
such that the courant number v∆t

∆x is approximately 1.

• The deterministic model is extended into a stochastic model by adding
a noise parameter ω on the left boundary. We use an AR(1) model to
describe the noise.

• Code your model in AdvectionStochModelInstance.java. For inspira-
tion, you will find in the same directory an implementation of the Lorenz
model.

• You can compile your model by typing ”ant build” in the directory
exercise 6/simple advection model. This will create the file
bin/simple advection model.jar.

1Java Runtime Environment (JRE), which is installed on most computers is not sufficient
since this will allow you to run java programs but it does not include the java compiler javac
that is needed to create you own (parts of) programs

15

• Run the model. You can use file advectionSimulation.oda. In or-
der to be able to run your model, java must be able to find the file
simple advection model.jar. To accomplish this, you can copy your
advection model jar-file to the bin-directory of your OpenDA installation
or add the full path of your jar-file (simple advection model.jar) to the
java class path variable CLASSPATH.
By default, the Windows scripts oda run gui.bat and oda run batch.bat

use the JRE environment that is provided with OpenDA. If this JRE is in-
compatible with your JDK installation (Error: Unsupported major.minor
version 51.0), use oda run batch.bat <inputfile> -jre "location of

your JDK" to overrule the default JRE.

• Use the script plot movie.m to visualize the model results. You will see
that the model suffers from numerical diffusion. You can solve this by
using a second order upwind method but this is not necessary for this
exercise.

• Create an ensemble of model simulations and study the model uncertainty
in space and time.

• The provided observation file observations.cvs does not contain obser-
vations that correspond to the advection model. Create your own obser-
vation file for the locations x = 0.2, x = 0.5 and x = 0.7. Use the model
to create the values. Run the model with noise on the left boundary.
Optionally generate some additional noise and add it to the generated ob-
servations. You can use the script generate obs to simplify the creation
of the observations file.

• Using your generated observations, setup an ensemble Kalman filter run.
Experiment with various numbers of ensembles, different settings of the
AR(1) model.

• Experiment with different intervals between the available observations.
What do you observe. Is this behavior different from the Lorenz model?
Evaluate the uncertainty of the estimates.

• Experiment with only assimilating the data from one of the three locations
and use the other locations as validation. What do you observe. Do all
the locations have the same impact? Explain the behavior you observe.

• Use the same data as generated before and use the Kalman filter now
with different values of the system noise covariance and measurement noise
covariance. Explain the behaviour that you observe.

7 Exercise 7: Localization

Directory: exercise localization

In this exercise you will learn about localization techniques and how to use
them in OpenDA. This exercise is inspired on the example model and experi-
ments from ”Impacts of localisation in the EnKF and EnOI: experiments with a

16

small model”, Peter R. Oke, Pavel Sakov and Stuart P. Corney, Ocean Dynamics
(2007) 57: 32-45.

The model we use is a simple circular advection model

∂a

∂t
+ u

∂a

∂x
= 0 (15)

where u=1 is the speed of advection, a is a model variable , t is time and x
is a space ranging from 1 to 1000 with grid spacings of 1. The computational
domain is periodic in x.

In this model there are two related variables a and b where b is initialised
with a balance relationship:

b = 0.5 + 10
da

dx
(16)

and propagated with an advection model similar to the one for a, i.e.:

∂b

∂t
+ u

∂b

∂x
= 0 (17)

Since a and b are propagated with the same flow, the balance relationship will
remain valid also for t > 0. The relationship between a and b is motivated by
the geostrophic balance relationship between pressure (a) and velocity (b) in
oceanographic and atmospheric applications.

In this experiment we will only observe and assimilate a and investigate how
both a as b are updated. The ensemble is carefully constructed in order to have
the right statistics. The initial ensembles are generated off line and they will be
read when the model is initialised in OpenDA.

• Investigate the sript generate ensemble.py and figure out how the en-
sembles are generated.

• Run python script generate ensemble.py to generate ensembles, obser-
vations and true state for a 25, 50 and 100 ensemble experiment.

• Run the experiment for 50 ensemble members (enkf 50.oda).

• The variables a, b can be compared to the true state using the python
script plot results.py.

• Run the experiment for 25 ensembles, copy the script plot results.py to
e.g. plot results 25.py and adjust it in order to read the results from
enkf25 results.py. (change 2nd line of the plot results.py script.
You will see that the 25 ensemble run is not able to improve the model.

• Create input to run a 100 ensemble experiment. Note: do not forget to
change the name of the output file (section resultWriter) to avoid that
your previous generated results are overwritten.

• Run an experiment with 25 ensembles with localization (enkf 25 loc.oda)
and generate the plots.

• The results (for 25 ensembles) with localization should look better than
the the experiment without localization.

17

• Investigate whether the relation between a and b is violated by the various
experiments. You can use the script check balance.py.

• Try changing the localization radius (initial value is 50) and see how the
performance of the algorithms changes (both for results as balance be-
tween a and b). You can plot the localization weight functions for each
observation location (rho 0, rho 1, rho 2 and rho 3) as well.

18

	Double Pendulum
	Input files
	Simulation and postprocessing with the double pendulum model
	simulation
	postprocessing

	An alternative simulation with the double-pendulum model
	An ensemble of model runs

	Some basic properties of the EnKF with Lorenz 3 variable model
	Steady-state Kalman Filter
	Exercise 4: A black box model - Calibration
	Wrapper configuration files

	Exercise 5: A black box model - Filtering
	Sequential simulation
	Sequential ensemble simulation
	parallel computing
	ensemble kalman filter

	Exercise 6: Writing your own toy model
	Exercise 7: Localization

